
High Performance Computing SoftwareHigh Performance Computing Software

JPL Internal Seminar SeriesJPL Internal Seminar Series

Common Component Architecture (CCA) Experiences and Measurements

Dr. Daniel S. Katz
Thursday, July 3, 2003
12:00 noon – 1:00 p.m.

Building 126, Room 225

A growing problem in the development of large-scale multi-disciplinary scientific applications for high-
performance computers is managing the interaction between portions of the application developed by 
different groups, possibly at different periods if code-reuse is desired. In the business world, component-
based software engineering has been proposed as a solution. These technologies may not be appropriate for 
scientific computing. To examine this issue, the Common Component Architecture (CCA) Forum was 
formed. It is developing a component architecture specification to address the unique challenges of high-
performance scientific computing, with emphasis on scalable parallel computations that use possibly 
distributed resources, and developing a reference framework, various components, and supplementary 
infrastructure.

NASA's ESTO-CT (Earth Science Technology Office's Computation Technologies) project has so far been 
successful in achieving its goal of "Demonstrating the power of high-end, scalable, and cost-effective 
computing environments to further our understanding and ability to predict the dynamic interaction of 
physical, chemical, and biological processes affecting the Earth, the solar-terrestrial environment, and the 
universe". However, the impact on software development for most scientists in the broader community has 
been limited. This was recognized by NASA management, and the project's current work emphasizes 
frameworks and interoperability for large-scale high performance scientific software development and 
maintenance. This seminar is a result of the ongoing study of the CCA Forum's technology by the ESTO-CT 
project.

We will discuss qualitative and quantitative examinations of the CCA software as applied to sequential and 
parallel example applications that include unstructured adaptive mesh refinement (AMR). The reason for 
this choice is that AMR libraries are used by many of the ESTO CT applications, which are generally 
physical, grid- or mesh-based simulations. The process of modifying existing Fortran 90 code consisting of a 
driver routine and an AMR library into two components will be described in detail, and the performance of 
the original application, and the componentized version will be compared. We will also discuss parallel 
components, including the procedure used to transform the code into components, as well as comparing the 
performance of the two versions.

For questions, please contact Hans Zima at 4-8980.


